CS8071-ADT
 JCE-IT 2021-22

	UNIT 2
	OBJECT AND OBJECT RELATIONAL DATABASES

SYLLUBUS: UNIT II OBJECT AND OBJECT RELATIONAL DATABASES 9 Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies.
CONTENTS:

2.1 Concepts for Object Databases

2.2 Type Constructors

2.3 Encapsulation of Operations

2.4 Type and Class Hierarchies

2.5 Inheritance

2.6 Complex Objects

2.7 Object Database Standards

2.8 Object Relational and Extended
2.9 Case Studies.

[image: image1.png]Concept for Object Databases

Object identity is a fundamental object orientation concept. With object identity,
objects can contain or refer to other objects. Identity is a property of an object that
distinguishes the object from all other objects in the application.

Object identity is a stronger notion of identity than typically found in
programming languages or in data models not based on object orientation.

Several forms of identity :

a) Value : A data value is used for identity (e.g., the primary key of a tuple in a
relational database).

b) Name : A user-supplied name is used for identity (e.g., file name in a file
system).

<) Built-in : A notion of identity is built-into the data model or programming
languages, and no user-supplied identifier is required.

Object identity is typically implemented via a unique, system-generated OID. The
value of the OID is not visible to the external user, but is used internally by the
system to identify each object uniquely and to create and manage inter-object
references.

There are many situations where having the system generate identifiers
automatically is a benefit, since it frees humans from performing that task.
However, this ability should be used with care.

System-generated identifiers are usually specific to the system, and have to be
translated if data are moved to a different database system.

System-generated identifiers may be redundant if the entities being modeled
already have unique identifiers external to the system, e.g., SIN#.

In an object-oriented database, each real-world entity is represented by an object.
This object has a state and a behaviour. The combination of the current values of
an object's attributes define the object's state. A set of methods, acting on an
object's state, define the object's behaviour.

When it comes to identity, each object in the database is defined by a unique
object identifier. There are certain differences between keys and object identifiers.

A key is an attribute value, or a set of attribute values. An example would be an
employee number. As a key is an attribute value, it can be modified, at least
theoretically.

[image: image2.png]L.
2.
3.
4.
5,
6.

In this sense, a key is dependent on the object's state. In contrast, object identifiers
are independent from an object's state. Two object's have a different object
identifier, even if all their attributes' values is actually the same.

Another difference is, that a key is unique in a certain relation only. Object
identifiers are unique in the whole database. Finally, object identifiers are
generated by the database system. The database user has absolutely no control
over these identifiers.

In contrast, a key can be changed by the database user by simply performing a
modification operation.

Using object identifiers comes with a set of advantages. First of all, the database
user need not to concern with defining keys for each relation. Another advantages
is the better performance, as the handling of object identifiers is implemented on a
low level by the system.

When using object identifiers, we have to distinguish two different kinds of object
equality. The first one is identity equality.

Identity equality is given, if two objects have the same object identifier. The
second one is value equality. Value equality is given, if all the attributes' values of
two objects are identical. Identity equal objects are always value equal. The reverse
is not true.

Features of Object-Oriented Database Management System

Support for complex objects

Support for object identity

Data persistence must be provided.

OODMS must support concurrent users.

OODMS must be capable of recovery from hardware and software failures

Support for dynamic binding

Object Structure

The object-oriented paradigm is based on encapsulating code and data into a
single unit. Conceptually, all interactions between an object and the rest of the
system are via messages. Thus, the interface between an object and the rest of the
system is defined by a set of asllowed messages.

[image: image3.png]e In general, an object has associated with it :

a) A set of variables that contain the data for the object. The value of each
variable is itself an object.

b) A set of messages to which the object responds.

c) A set of methods, each of which is a body of code to implement each message;
a method returns a value as the response to the message.

e In OO database, the state of a complex object may be constructed from other
objects by using certain type constructors.

e One formal way of representing such objects is to view each object as a triple (i, ¢,
v), where i is a unique object identifier, ¢ is a type constructor, and v is the object
state.

e The three most basic constructors are atom, tuple and set.
e An object has associated with it :

1. A set of variables that contain the data for the object. The value of each
variable is itself an object.

2. A set of messages to which the object responds; each message may have zero,
one, or more parameters.

3. A set of methods, each of which is a body of code to implement a message; a
method returns a value as the response to the message.

e The physical representation of data is visible only to the implementor of the object.
Messages and responses provide the only external interface to an object. The term
message does not necessarily imply physical message passing. Messages can be
implemented as procedure invocations.

Drawbacks of Object Databases

a) Object databases are not as popular as RDBMS. It is difficult to find object DB
developers.

b) Not many programming language support object databases.

c) RDBMS have SQL as a standard query language. Object databases do not have a
standard.

d) Object databases are difficult to learn for non-programmers.

m Type Constructors

e Constructor is used for initializing the values to the data members of the class.
Constructor is that whose name is same as name of class.

[image: image4.png]Constructor gets automatically called when an object of class is created.
Constructors never have a Return Type even void. Constructor are of Default,
Parameterized and Copy Constructors.

Default constructor : The default constructor is simple constructor which doesn't
accept any arguments. It's definition has only one argument which is a reference
to the instance being constructed.

Parameterized constructor : Constructor with parameters is known as
parameterized constructor. The parameterized constructor take its first argument as
a reference to the instance being constructed known as self and the rest of the
arguments are provided by the programmer.

Copy constructor : This is also another type of constructor. In this constructor we
pass the object of class into the another object of same class. As name suggests
you copy, means copy the values of one object into the another object of class.
This is used for copying the values of class object into an another object of class so
we call them as copy constructor and for copying the values we have to pass the
name of object whose values we wants to copying and when we are using or
passing an object to a constructor then we must have to use the & Ampersand or
Address Operator.

- Encapsulation of Operations

Data encapsulation, also known as data hiding, is the mechanism whereby the
implementation details of a class are kept hidden from the user. The user can only
perform a restricted set of operations on the hidden members of the class by
executing special functions commonly called methods.

Encapsulation is derived from the notion of Abstract Data Type (ADT). It is
motivated by the need to make a clear distinction between the specification and
the implementation of an operation. It reinforces modularity and provides a form
of logical data independence.

Define behavior of a class of object based on operations that can be externally
applied. External users only aware of interface of the operations. It can divide
structure of object into visible and hidden attributes.

1. Constructor operation : Used to create a new object
2. Destructor operation : Used to destroy (delete) an object
3. Modifier operations : Modify the state of an object

The external users of the object are only made aware of the interface of the
operations, which defines the name and arguments (parameters) of each operation.

[image: image5.png]e The implementation is hidden from the external users; it includes the definition of
any hidden internal data structures of the object and the implementation of the
operations that access these structures. The interface part of an operation is
sometimes called the signature and the operation implementation is sometimes
called the method.

o The term class is often used to refer to a type definition, along with the definitions
of the operations for that type. Following is the type definitions.
define class EMPLOYEE

type tuple (Fname : string;
Minit : char;
Lname : string;
Ssn : string;
Birth_date : DATE;
Address : string;
Sex : char;
Salary : float;
Supervisor : EMPLOYEE;
Dept. : DEPARTMENT;);
operations age : integer;
create_emp : EMPLOYEE;
destroy_emp : boolean;

end EMPLOYEE;
define class DEPEARTMENT

type tuple (Dname : string;
Dnumber : integer;
Mgr : tuple (Manager : EMPLOYEE;
Start_date : DATE;);
Locations : set (string);
Employees : set (EMPLOYEE);
Projects : set (PROJECT););
operations no_of emps: integer;
create_dept : DEPARTMENT;
destroy_dept : boolean;

assign_emp(e : EMPOLYEE : boolean;

(* adds an employee to the department *)

rempve_emp(e : EMPLOYEE) : boolean;

(* removes an employee from the department *)
end DEPARTMENT;

[image: image6.png]e A number of operations are declared for each class, and the signature of each
operation is included in the class definition. A method (implementation) for each
operation must be defined elsewhere using a programming language.

e Typical operations include the object constructor operation, which is used to create
a new object, and the destructor operation, which is used to destroy (delete) an
object.

e A number of object modifier operations can also be declared to modify the states
of various attributes of an object. Additional operations can retrieve information
about the object.

- Type and Class Hierarchies

e In object-oriented programming, a class is a template that defines the state and
behavior common to objects of a certain kind. A class can be defined in terms of
other classes.

e For example, a truck and a racing car are both examples of a car. Another
example is a letter and a digit being both a single character that can be drawn on
the screen.

e In the latter example, the following terminology is used :

1. The letter class is a subclass of the character class; (alternative names: child
class and derived class)

2. The character class is immediate superclass (or parent class) of the letter class;
3. The letter class extends the character class.

e The third formulation expresses that a subclass inherits state (instance variables)
and behavior (methods) from its superclass(es). Letters and digits share the state
(name, font, size, position) and behavior (draw, resize, ..) defined for single
characters.

e The purpose of a subclass is to extend existing state and behavior: a letter has a
case (upper and lower case, say stored in the instance variable letterCase) and
methods for changing the case (toUpperCase, toLowerCase) in addition to the state
that it already has as a character.

e However, a digit does not have a case, so the methods toUpperCase, toLowerCase
do not belong on the common level of the Character class. There are methods that
are special to the digit class. For instance, a digit may be constructed from an
integer value between 0 and 9 and conversely, the integer value of a digit may be
the result of say the intValue method.

[image: image7.png]Classes may be arranged in a hierarchy, with different classes in
superclass-subclass relations. To create a class that is a subclass of another class,
you use the identifier extends.

class subclass-name extends superclass-name {

class-definition

}

A subclass inherits the variables and methods of its superclass.

A method definition in a superclass is overridden by a definition for the same
method in a subclass. An instance of the subclass calling the method uses the
definition that is lowest in the hierarchy of classes.

A method definition may call a method in a superclass using the keyword super.
For example, in the Animal class the definition for destroy overrides the definition
in its superclass Thing by first doing what destroy in Thing does and then doing
something additional.
public void destroy() {
super.destroy();
closeMouth();

}

An abstract class, like Thing, is a class which cannot be instantiated directly. It
must have at least one subclass which extends it and which is not abstract; the
subclass may be instantiated directly. Even though an abstract class can never be
instantiated directly, it can be used as a data type.

An abstract class may include abstract methods. An abstract method says nothing
about what it does, but it must be overridden in any non-abstract class which
extends the abstract class. An abstract class may also include non-abstract
methods.

For example, the abstract class Animal has an abstract method step which
subclasses of Animal, that is, Predator and Critter, must define.
public abstract void step();

Note that an abstract method declaration has no body.

Extent : In most OO databases, the collection of objects in an extent has the same
type or class. However, since the majority of OO databases support types, we
assume that extents are collections of objects of the same type for the remainder of
this section.

Persistent collection : It holds a collection of objects that is stored permanently in
the database and hence can be accessed and shared by multiple programs.

[image: image8.png]e Transient collection : It exists temporarily during the execution of a program but
is not kept when the program terminates.
class Employee (extent all_emp key ssn)

{ attribute string name;
attribute string ssn;
attribute string age;
relationship Dept Works_for inverse

dept :: has;
void reassign (in string new_frame);

XA Inheritance

¢ Inheritance allows the definition of new types based on other predefined types,
leading to a type (or class) hierarchy.

e A type is defined by assigning it a type name, and then defining a number of
attributes (instance variables) and operations (methods) for the type.

e In the simplified model we use in this section, the attributes and operations are
together called functions, since attributes resemble functions with zero arguments.

e A function name can be used to refer to the value of an attribute or to refer to the
resulting value of an operation (method). We use the term function to refer to
both attributes and operations, since they are treated similarly in a basic
introduction to inheritance.

e There are at least four types of inheritance : Substitution inheritance, Inclusion
inheritance, Constraint inheritance and Specialization inheritance.

e In substitution inheritance, we say that a type t inherits from a type t', if we can
perform more operations on objects of type t than on object of type t'. Thus, any
place where we can have an object of type t', we can substitute for it an object of
type t. This kind of inheritance is based on behavior and not on values.

¢ Inclusion inheritance corresponds to the notion of classification. It states that t is
subtype of t, if every object of type t is also an object of type t. This type of
inheritance is based on structure and not on operations. An example is a square
type with methods get, set(size) and filled-square, with methods get, set(size), and
fill(color).

¢ Constraint inheritance is a subcase of inclusion inheritance. A type t is a subtype
of a type t) if it consists of all objects of type t which satisfy a given constraint.
An example of such a inheritance is that teenager is a subclass of person :

[image: image9.png]Teenagers don't have any more fields or operations than persons but they obey
more specific constraints.

With specialization inheritance, a type t is a subtype of a type t, if objects of type
t are objects of type t which contains more specific information. Examples of such
are persons and employees where the information on employees is that of persons
together with some extra fields.

A type in its simplest form has a type name and a list of visible (public)
functions :

TYPE_NAME : function, function, ..., function

For example, a type that describes characteristics of a PERSON may be defined as
follows :

PERSON: Name, Address, Birth_date, Age, Ssn

In the PERSON type, the Name, Address, Ssn, and Birth_date functions can be
implemented as stored attributes, whereas the Age function can be implemented
as an operation that calculates the Age from the value of the Birth_date attribute
and the current date.

The concept of subtype is useful when the designer or user must create a new
type that is similar but not identical to an already defined type. The subtype then
inherits all the functions of the predefined type, which is referred to as the

supertype.

Complex Objects

Complex objects (Object structure)

It means there is no restriction in the structure in the object. In ODBs, the value of
a complex object can be constructed from other objects. Each object is represented
by triple.

Complex objects are built from simpler ones by applying constructors to them. The
simplest objects are objects such as integers, characters, byte strings of any length,
Booleans and floats.

There are various complex object constructors : tuples, sets, bags, lists, and arrays
are examples.

An object is defined by a triple (OID, type constructor, state) or (i, ¢, v) where
OID is the unique object identifier, type constructor is its type (such as atom,
tuple, set, list, array, bag, etc.) and state is its actual value.

Example :
(i1, atom, 'John')
(i2, atom, 30)

[image: image10.png](i3, atom, 'Mary')
(i4, atom, 'Mark')
(i5, atom 'Vicki')
(i6, tuple, [Name: i1, Age: i3])
(i7, set, {i4, i5})
(i8, tuple, [Name: i3, Friends: i7])
(i9, set, {i6, i8))
e Unstructured complex object : It is provided by a DBMS and permits the storage
and retrieval of large objects that are needed by the database application.

e There are two types of complex objects in object oriented database system which
are : Structured complex object and Unstructured complex object

1. Structured Complex object

e Structured complex object is defined by repeated application of the type
constructors provided by the OODBMS. Simply structured complex objects are
constructed by using type constructors (set, atom, tuple etc.).

e Hence, the object structure is defined and known to the OODBMS. The OODBMS
also defines methods or operations on it.

e Two types of reference semantics (ownership semantics and reference semantics)
exist between a complex object and its components at each level.

e Ownership semantics applies when the sub-objects of a complex object are
encapsulated within the complex object and are hence considered part of the
complex object. It is also called is-part-of or is-component-of relationship. e.g.,
"Rupali" atomic value owned by employee. Means that 'Rupali’ is dependent on
owner.

e Reference semantics applies when the components of the complex object are
themselves independent objects but may be referenced from the complex object. It
is also called is-associated-with relationship. e.g., Department referenced by the
employee object.

2. Unstructured complex objects

e It is a data type provided by a DBMS and permits the storage and retrieval of
large objects that are needed by the database application. These objects are
unstructured in the sense that the DBMS does not know what their structure is,
only the application programs that uses them can interpret their meaning.

[image: image11.png]e These objects are considered complex because they require large area of storage
and are not part of the standard data types provided by traditional DBMSs.

- Object Database Standards

e The ODMG object model is the data model upon which the Object Definition
Language (ODL) and Object Query Language (OQL) are based.

e This object model provides the data types, type constructors and other concepts
that can be utilized in the ODL to specify object database schemas.

e The ODMG (Object Database Management Group) is a sub-group of the OMG
(Object Management Group). The OMG is a consortium of hundreds of object
vendors whose purpose is setting standards for object technology.

e The ODMG is the standards setting group for object database technology that is
made up of a consortium of object-oriented DBMS vendors.

e In 1993 the first release of the ODMG was published called ODMG-93, by
members of the Object Database Management Group (ODMG). This was the result
of over a year's work defining standards for OODBS (Object-Oriented Database
System).

e The ODMG-93 standard included a common architecture and definition for an
OODBMS, definitions for an object model, an Object Definition Language (ODL),
an Object Query Language (OQL), and for bindings to C++ and Smalltalk.
ODMG-93 used the OMG object model as it's starting point and then extended it
for database needs.

e As a result of ODMG-93 and the standards that were created applications become
more portable and the whole OODBMS (Object Oriented Database Management
System) technology received a much needed uplift. The ODMG-93 model will be
updated as needed and new releases will be published by the ODMG.

Object Definition Language

e ODL is independent of any programming language and used to create object
specifications.

e ODL support several possible mappings from an object schema diagram (ER or
EER) into ODL classes.

e Entity types mapped to ODL classes and inheritance done using extends. There is
no direct way to map unions or do multiple inheritance.

e ODL is used to define persistent classes, those whose objects may be stored
permanently in the database. ODL classes look like Entity sets with binary

[image: image12.png]relationships, plus methods. ODL class definitions are part of the extended, OO
host language.

A class declaration includes : name for the class, Optional key declaration(s),
extent declaration and element declration.

Extent declaration is name for the set of currently existing objects of the class.
Element declarations is an element is either an attribute, a relationship, or a
method.

Object Query Language (OQL)

OQL syntax similar to SQL with extensions for ODMG concepts.

OQL is the object-oriented query standard. It uses ODL as its schema definition
language. Types in OQL are like ODL's. Set(Struct) and Bag(Struct) play the role of
relations.

The basic OQL syntax is a select...from...where...structure, as for SQL. For
example, the query to retrieve the names of all departments in the college of
'Engineering' can be written as follows :
QO0: SELECT d.dname

FROM d in departments

WHERE d.college = 'Engineering' ;
An entry point to the database is needed for the each query. An extent name may
serve as an entry point.

EX] Object Relational and Extended Relational Systems

An Object-Relational Database (ORD), or Object-Relational Database Management
System (ORDBMS), is a Database Management System (DBMS) similar to a
relational database, but with an object-oriented database model : objects, classes
and inheritance are directly supported in database schemas and in the query
language.

Extend the relational data model by including object orientation and constructs to
deal with added data types. It allow attributes of tuples to have complex types,
including non-atomic values such as nested relations.

A relational database is composed of many relations in the form of
two-dimensional tables of rows and columns containing related tuples.

Organizing data into tables, the form in which data is presented to the user and
the programmer, is known as the logical view of the database. The stored data on
a computer disk system is called the internal view. The rows (tuples) are called
records and the columns (fields in the record) are called attributes

[image: image13.png]e Each column has a data type (i.e., int, float, date). There are various restrictions on
the data that can be stored in a relational database. These are called constraints.
The constraints are domain constraints, key constraints, entity integrity constraints,
and referential integrity constraints. These constraints ensure that there are no
ambiguous tuples in the database

e RDBMSs use Structured Query Language (SQL, currently SQL2) as the Data
Definition Language (DDL) and the Data Manipulation Language (DML).

e SQL includes statements for data definition, modification, querying and constraint
specification. The types of queries vary from simple single-table queries to
complicated multitable queries involving joins, nesting, set union/differences, and
others.

Object Relational Features in SQL

e To support object-related features, Oracle Database provides SQL extensions,
including DDL, to create, alter, or drop object types; to store object types in tables;
and to create, alter, or drop object views. There are DML and query extensions to
support object types, references, and collections.

e The SQL standard enables users to easily migrate their database applications
between database systems.

e In addition, users can access data stored in two or more RDBMSs without
changing the database sub-language (SQL).

Features of SQL-99

e A mechanism for specifying object identity through the use of reference type is
included.

e Encapsulation of operations is provided through the mechanism of user-defined
types that may include operations as part of their declaration.

e Inheritance mechanisms are provided.

e Some type constructors have been added to specify complex objects.

Advantages and Disadvantages of ORDBMSs

Advantages of ORDBMSs

1. Reuse and Sharing : The main advantages of extending the relational data model
come from reuse and sharing.

2. Increased productivity : ORDBMS provides increased productivity both for the
developer and for the, end user

[image: image14.png]3. Use of experience in developing RDBMS

Disadvantages of ORDBMSs

1. The ORDBMS approach has the obvious disadvantages of complexity and
associated increased costs.

2. ORDBMS vendors are attempting to portray object models as extensions to the
relational model with some additional complexities. This potentially misses the
point of object orientation, highlighting the large semantic gap between these two
technologies.

Difference between RDBMS, ODBMS and ORDBMS

Criteria

RDBMS

ODBMS

ORDBMS

Defining standard

SQL2

ODMG-2.0

SQL3 (in process)

Support for

Does not support; It is

Supports extensively

Limited support;

object-oriented difficult to map mostly to new data
features program object to the type

database
Usage Easy to use OK for programmers; ~ Easy to use except for

some SQL access for some extensions

end users

Support for complex Does not support Supports a wide Supports abstract

relationships abstract datatypes variety of datatypes datatypes and
and data with complex relationships
complex
inter-relationships
Performance Very good Relatively less Expected to perform
performance performance very well

Two Marks Questions with Answers

Q.1 What is Object Definition Language (ODL) ?

Ans. : ODL is the standardized language for defining the structure of database with
respect to the object data model.

Q.2 Define Object Identity.

Ans. : An object is an entity that has a local state and an ability to manipulate its local
state in response to external requests. Each object is associated with a unique identifier,
regardless of its current state.

Q.3 What is complex object in database ?

Ans. : The simplest objects are objects such as integers, characters, byte strings of any
length, booleans and floats. There are various complex object constructors :

tuples, sets,

[image: image15.png]bags, lists, and arrays are examples Object-Oriented Database Management System
(OODBMS).

Q.4 What is polymorphism ?

Ans. : Polymorphism allows the same operator or symbol to have different
implementations, depending on the type of objects to which the operator is applied.

Q.5 What is data model ?

Ans. : The data model consists of data types, type constructors, etc. and is similar to
the SQL report that describes the standard model for relational databases.

Q.6 Explain difference between relational databases and OO databases.

Ans. : The difference between relational databases and OO databases is the way in
which relationships are handled. In OO databases, the relationships are represented
with OIDs, which improves the data access performance. In relational databases,
relationships among tuples are specified by attributes having the same domain.

Q.7 What is basic goal of object-relational database ?

Ans. : The basic goal for the object-relational database is to bridge the gap between
relational databases and the object-oriented modeling techniques used in programming
languages such as Java, C++, Visual Basic .NET or C#.

 ARUN PRASAD.K, ASP/IT UNIT-2

